Advances in ensemble weather
prediction, 2008-2009

Highlights

* Improved stochastic treatments of model
errors in ensemble predictions

* Growing maturity of ensemble Kalman filter
for improved data assimilation, ensemble
initialization.

* Convection-permitting ensembles

e Facilitation of research and model
comparisons with new TIGGE data set

* Reforecasts and ensemble post-processing
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(1) Improved stochastic treatments of
model errors in ensemble predictions

SPPT: Stochastically Perturbed Physical
Tendencies (ECMWF TM 598)

VXe{uvT.q}, X,=(1+ru)X, pe(0,]

ris random number, u used for reducing the perturbation
amplitude near surface and in stratosphere. Random

numbers generated through spectral pattern generator of
Berner et al. (2009).
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SPPT, continued.
v (9,,t) ZZI// t)P" (cosp)e™

n=0m=-n

W’ = streamfunction forcing; A = longitude, ¢ = latitude, t = time;
m = zonal wavenumber, n = total wavenumber,

W’ M(t) = the random perturbation for this wavenumber,

P.™= Legendre polynomial.

y" (e A =(1-a)y " (1) + g, Nae()

(1-a) = linear autoregressive parameter, 0 < a < 1;
g, = wavenumber-dependent noise amplitude,
g(t) = Gaussian white-noise process with zero mean, variance o,?

SPPT: example of time series of r

Figure 1: Example of the pattern r used in the revised scheme; contour interval 0.25; red (blue) contours correspond to

positive(negative) values.

10/26/09



SPPT: T850 RMS error, NH & tropics

NoTenPert: No stochastic tendencies
= SPgyp: Buizza, Miller, Palmer blocky stochastic tendencies
= = = SP1M: SPPT, 500 km, 6 h, o(r)=0.5

------ SP1L: SPPT, 500 km, 6 h, o(r)=0.75
------ SP2: Two independent r, planetary and synoptic scales
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Figure 6: Brier score for 24-hour precipitation accumulations for events of Smm/d=". Left: Northern Extra-tropics
(30 °N-90 °N), right: Tropics (30 °S-30 °N). The lead times at which the score differences (between an experiment and
SPpwmp) are statistically significantly different from zero at the 10% level are marked with a dot. Verification against

SYNOP data, joint sample of 40 cases.
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SPPT: incidence of heavy rain in old
and new stochastic tendency schemes
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Figure 5: Precipitation frequency ratios between forecasts using tendency perturbations and forecasts without tendency
perturbations. Northern Extra-tropics (left), Tropics (right).

old Buizza et al. scheme overpredicted heavy events; this much reduced.

Similar cautionary tale with
stochastic convection

* Tompkins and Berner (2008) perturbed humidity
inputs to convective parameterization scheme.

0.1

0.081
Since CP was tuned originally

to give acceptable results,
introduction of stochasticity
produced a change in the
distribution of precipitation
forecasts, which in this case
had undesirable consequences
to the forecasts.
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Figure 11. Normalized PDF of convective rain rates in an
unperturbed forecast (wide gray) and a perturbed (narrow

black) forecast from the IN-SUBGRID-FULLPROF case. Ref: Tompkins and Berner, 2008, JGR, D18101
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Spectral Stochastic Backscatter (SPBS)

- Total dissipation rate is computed on all model levels; 3
components:

- Numerical dissipation, from bi-harmonic diffusion and
interpolation error in the semi-Lagrangian scheme.

- KE dissipation due to orographic gravity wave drag and
flow blocking

- Rate of kinetic energy export from sub-gridscale deep
convection into the resolved flow.

- Found that must inject energy not just at truncation
limit, but also at sub-synoptic scales of motion.

- Note: FURTHER DETAIL to be ADDED.

Backscatter comparison with
perturbed physical tendencies
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(2) Maturity of ensemble Kalman filter
for data assimilation, ensemble prediction

* Operational for last several years at Canadian
Meteorological Centre.

— Progress toward 4D-Var/EnKF hybrid.

* Used with high-resolution (T382) global models for
NOAA’s Hurricane Forecast Improvement Project.

* Approximations:
— LETKF used operationally at UK Met Office

— ET (Ensemble Transform) used operationally at NCEP for
medium-range ensemble

— Experiments with parallel 4D-Vars & perturbed obs at
ECMWEF.

Key issues with EnKFs

Treatment of model (system) errors in
appropriate ways.

Methods of stabilization/dealing with limited
ensemble size introduces consequences.

— Covariance localization in vertical ill-defined with non-
point observations such as radiances.

— As shown, additive noise to account for model error
constrains forecast spread growth.

Best way to hybridize with variational schemes
Replicating variational QC.
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Canonical EnKF equations

X/ = XZZ+K(yl. - Hxl;)

K=P'H"(HP’H" +R)"

P =([x(1)-% ()X (1)
P = ([x (1) -% (1) ] x: (1)

x!(t+1)= Mx!(t)+n,,
1

—X.

(n,

'0])
-x(0]')

n)=Q

how are we estimating the model-error?

Model-error representations
in CMC EnKF (Houtekamer et al. July 2009 MWR)
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FIG. 7. The rms ensemble spread for the wind speed (m s~ ') at
n = 0258 for different EnKF configurations. The latitudinal rms
values have been computed for the analyses valid between 0000
UTC 1 Jul 2006 and 1200 UTC 10 Jul 2006.

operational = multimodel + SKEB + PTP

rms temperature spread at 1=0.842
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FIG. 8. The rms ensemble spread for the temperature (K) at 7 =
0.842 for different EnKF confi
have been computed for the analy
1 Jul 2006 and 1200 UTC 10 Jul 2006.

ons. The latitudinal rms values
s valid between 0000 UTC

isotropic = additive noise to streamfunction and unbalanced T
SKEB = stochastic kinetic energy backscatter
PTP = perturbed physical tendencies (like ECMWF’s SPPT)

multi-model = 4 different CPs, 2 LSMs; 2 mixing length; 2 inverse Prandtl numbers

basic = no model error simulation

isotropic additive
noise dominates
in EnKF.
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Error & Spread (hPa)

A problem with isotropic additive noise

162 real—data MSLP Ensemble—mean
T

RMSE & spread

10 [T T T T

L ~—— Standard Additive RMSE
L +—3 Evolved Additive RMSE
8F  e..... Standard Additive Spread
L SRR Evolved Additive Spread

T

I T

Forecast lead (days)

the standard additive noise
results in a slow growth

of spread in the early hours
of the forecast. Introducing
the additive noise earlier
(here, 24 h earlier) and
evolving it forward in time
before using in the data
assimilation improves the
rate of growth of spread in
the forecasts.

Ref: Hamill and Whitaker,
2009 MWR, submitted.
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EnKF / 4D-Var hybrids?
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from Buehner et al.,, MWR,
accepted/minor.

Impact of CMC’s 4D-Var
> using EnKF covariances
s relative to using static initial
_25 covariances. Impact
fis measured in terms of
§§5 reduction/increase in
error standard deviation.
Negative impact where
contours are dashed.
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NOAA EnKF vs. NCEP operational 3D-Var

Vector Wind (left) and Temp (right) O-F (2009091000-2009093000)
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magnitude (mps) magnitude (K)
EnKF at half the resolution fits temp. obs as well as operational 3DVar, but shows
large improvement for winds.

TC position error and ensemble spread
FIM G8/EnKF vs NCEP GEFS/ET

NCEP EPS vs. FIM G8/EnKF Track Error & Spread
20090715 to 20091009
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FIM is NOAA/ESRL's experimental global icos grid model.
Error bars are 5t and 95 percentiles from paired block bootstrap.
Numbers in parentheses are the sample size at this lead.
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TC position error and ensemble spread
FIM G8/EnKF vs UK Met Office

UK Met Office EPS vs. FIM G8/EnKF Track Error & Spread
20090715 to 20091009

800~ (s6) (5I1) (44) (3I8) (32) (2|8) (23) (1I9) (13) (5;) 7

600 =  ceeeeeees FIM spread

L FIM rms error
......... UKMO spread
UKMO rms error

400 —

200 —

Ensemble Position Error & Spread (km)

Forecast Lead (Days)

TC position error and ensemble spread
FIM G8/EnKF vs ECMWF
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WRF high-resolution regional model
precipitation forecasts for Morakot

EnKF mean initial NCEP GSI mean from EnKF
Analyzed precip condition 3D-Var ICs ensemble
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OBS ) IC_EDA IC_GSI EF_mean

WRF/ARW, 4.5 km nested inside 13.5 km, initialized 2.5 days before landfall; GFS
ensemble used for lateral boundary conditions.

from draft article by Fuging Zhang et al., 2009 2

12



Ensemble precipitation forecasts for Morakot
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from 2007 NOAA/SPC “Spring Experiment”
(c/o Jack Kain, Steve Weiss)

“Spaghetti” Plot for Reflectivity > 40 dBZ
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RMS Error of Mean Sea-Level Pressure (hPa)
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(4) Exploring
ensemble system
characteristics
with the TIGGE
data set

from upcoming Bougeault et al. 2010
BAMS overview of TIGGE 27
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data set

from upcoming Bougeault et al. 2010
BAMS overview of TIGGE 28
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(5) Value of ensemble post-processing
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from Hagedorn presentation to 3™ International THORPEX conf., Monterey, CA, Sep 2009.

Conclusions

» Substantial progress in 2008-2009 on:
— Model error
— Ensemble initialization through EnKF.
— Convection-permitting applications.

— Exploration of multi-model concepts via TIGGE.

— Amelioration of systematic errors using
reforecasts.
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54-h ensembles from T382 GFS & EnKF initial
conditions.

member 02 member 04

Intense vortices in
forecasts, with
ensembles of
forecast positions
relatively close

to the observed
position (red dot).
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54-h ensembles from experimental T382 GFS &
GSI / ET perturbations (operational).

GSI/ET ensemble 54-hr fcst from 2009080500

member 01 member 03 member 04

Note that this GFS
model resolution
is much greater
than current
operational, T126

GSI-ET initialized
ensemble
produces less
intense vortices,
and forecasts are
slow in moving
typhoon west.
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